
CARDIOLOGY 2023

Determining
Adequacy and
Viability of the
Left Ventricle

Meryl S. Cohen, MD
Professor of Pediatrics
University of Pennsylvania,
Perelman School of Medicine

Disclosures

- I have no answers about how to determine adequacy of the left ventricle for biventricular repair
- Sorry...

LV Hypoplasia

SINGLE VENTRICLE

TWO VENTRICLE

CONTINUOUS SPECTRUM OF DISEASE

AUTHU STEHIOSIS

Coarctation

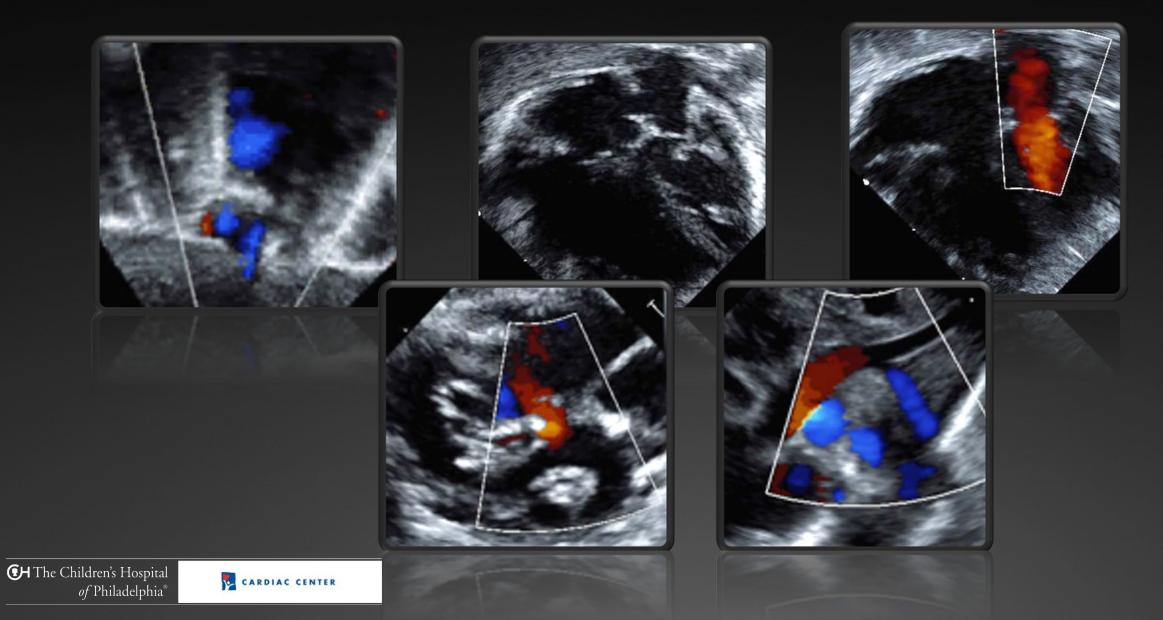
TAPVC

Mitral and

Unbalanced

of Aorta

DICHOTOMOUS TREATMENT OPTION

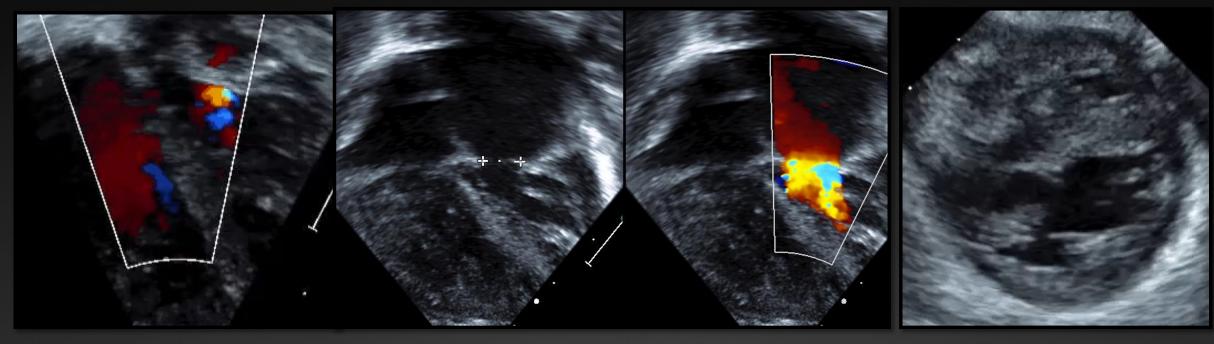

Critical

Mitral Sten UNLESS STAGED...

Left Heart Complex

Arch **Hypoplasia** **Aortic Stenosis Bicuspid Aortic Valve**

Day of Life 0


CICU Course

- Repeated echo to re-measure left structures
 - VSD remained bidirectional
 - Arch flow all antegrade
 - Mitral inflow with no gradient
 - Two papillary muscles
 - Probable variant of mitral valve arcade

	DOL 1	DOL 5
	cm, z-score	cm, z-score
Mitral Valve	0.5, - 3.0	0.6, -2.5
Aortic Valve	0.4, - 3.1	0.4, -2.8
Transverse Arch	0.2, - 4.2	0.3, -3.1
LVEDD	0.9, - 4.5	1.2, -2.8

Echo 6 Months After Arch Repair

- LVOT ok, VSD right to left in systole
- Mitral inflow mean gradient is 15 mmHg
- Suprasystemic PA pressure; PVR 5.5 WU

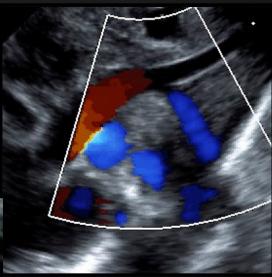
Why Haven't We Figured This Out?

- Prenatal physiology ≠ postnatal physiology
- Pre-op physiology ≠ post-op physiology
- Progressive effects of multiple levels of left-sided obstruction
- Intervention may:
 - Leave residual hemodynamic abnormalities
 - Result in "new" disease (MR or AR)
 - Result in diastolic heart failure/pulmonary hypertension

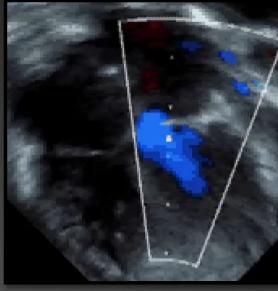
What are we talking about?

- Hypoplastic left heart syndrome
- Critical aortic stenosis
- Hypoplastic left heart complex/arch hypoplasia
- Unbalanced atrioventricular canal defect
- Double outlet right ventricle
- TAPVC

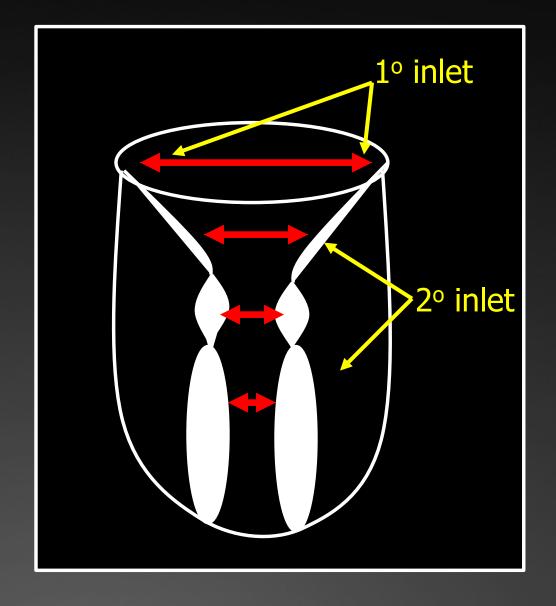
- LVOT size and anatomy
 - Aortic annulus size
- Aortic arch/CoA
- Presence of atrial and/or ventricular communication
- LV inlet size and anatomy
- LV size and function
- Presence of EFE


- RV function
- Presence of significant TR
- Branch pulmonary arteries
- VSD size and location
 - Re: Baffle to aorta/neoaorta

- LVOT size and anatomy
 - Aortic annulus size
- Aortic arch/CoA
- Presence of atrial and/or ventricular communication
- LV inlet size and anatomy
- LV size and function
- Presence of EFE



- LVOT size and anatomy
 - Aortic annulus size
- Aortic arch/CoA
- Presence of atrial and/or ventricular communication
- LV inlet size and anatomy
- LV size and function
- Presence of EFE

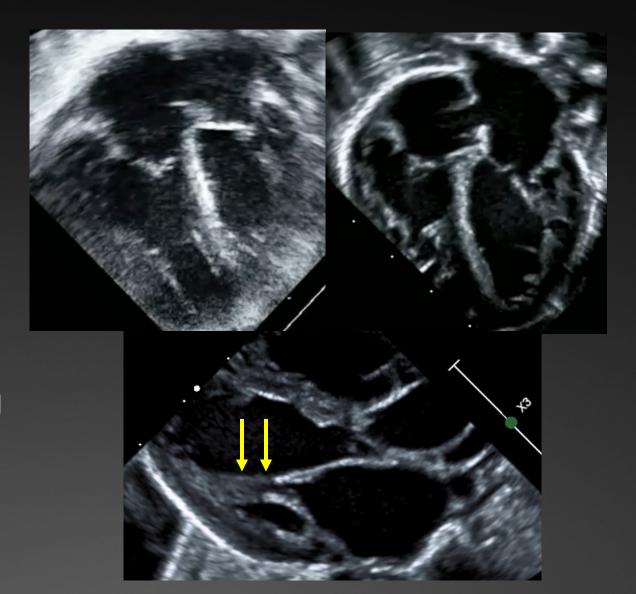


- LV inlet size and anatomy
- LV size and function
- Presence of EFE
- LVOT size and anatomy
 - Aortic annulus size
- Aortic arch/CoA
- Presence of atrial and/or ventricular communication

- RV function
- Presence of significant TR
- Functioning pulmonary valve
- Branch pulmonary arteries

Analysis of LV Inlet

- MV diameter
 - Z-score < ~-2.0
 - Leaflet and chordal anatomy
 - Papillary muscle number and location
 - Is the 2° inlet diameter narrowed?
- If the inlet is inadequate, the LV is likely to be inadequate as well...
 - If flow leads to LV growth, lack of flow leads to hypoplasia



Critical Aortic Stenosis

Risk Factors for BiV Repair

- Small Ao annulus
- LV dysfunction
 - EFE
 - Short, fat LV
- MV abnormalities
- Scores for decision-making
 - Rhodes/Colan
 - CHSS (Lofland)

Critical Aortic Stenosis RHODES CRITERIA, CIRC 1991

- Score = 14.0 (BSA) + 0.943 (Aortic root dimension_i + 4.78 long-axis dimension of heart + 0.157 (mitral valve area_i 12.03
- If score < -0.35, predicts failure of two ventricle repair

or 2 or more of following risk factors

- LV long-axis to heart long-axis ratio ≤ 0.8
- Aortic root diameter_i ≤ 3.5 cm/m²
- Mitral valve area $_i \le 4.75$ cm²/m²
- LV mass index ≤ 35 g/m²

Published Series on Critical Aortic Stenosis

Author

Predictors of Mortality

Latson, 1981	LV X-sect area < 1.6 cm ²
Mocellin, 1983	EFE, LVEVV < 80% normal
Gundry, 1986	EFE, Low EF, High LVEDP
Pelech, 1987	MV < 11mm, AoV < 6.5 mm
Hammon, 1988	LV X-sect area < 1.6 cm ²
Karl, 1990	Non-Apex forming LV
Parsons, 1991	LVEDD <13mm, vol <20ml/M ²
Rhodes, 1991	MV, AoV, Score < -0.35
Kovalchin, 1998	Retrograde flow in Asc Aorta
Lofland, 2001	EFE, smaller Ao V, older age
Colan, 2006	MV, New Score < -0.65, EFE

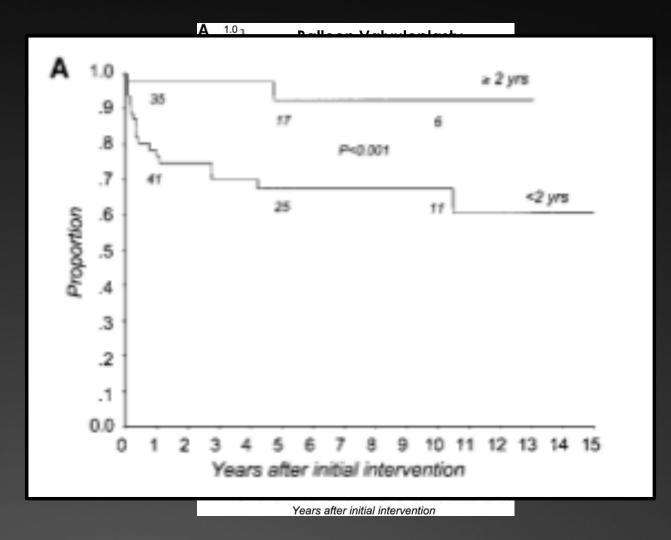

Mitral Valve

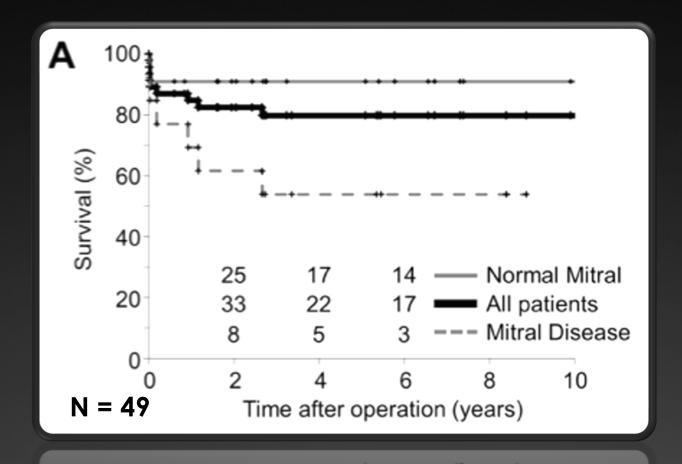
Author

Predictors of Mortality

Latson, 1981	LV X-sect area < 1.6 cm ²	
Mocellin, 1983	EFE, LVEVV < 80% normal	
Gundry, 1986	EFE, Low EF, High LVEDP	
Pelech, 1987	MV < 11mm, AoV < 6.5 mm	
Hammon, 1988	LVEDV < 20ml/M ² High PAp	
Karl, 1990	Non-Apex forming LV	
Parsons, 1991	LVEDD <13mm, vol <20ml/M ²	
Rhodes, 1991	MV, AoV, Score < -0.35	
Kovalchin, 1998	Retrograde flow in Asc Aorta	
Lofland, 2001	EFE, smaller AoV, older age	
Colan, 2006	MV, New Score < -0.65, EFE	

Mitral Arcade with Severe Progressive Stenosis




Congenital Mitral Stenosis

- 108 pts (1 mo to 18 yrs)
 - Surgical valvuloplasty (n=33)
 - Mitral valve replaced (n = 11)
 - Balloon MV dilation (n = 64)
- 38 deaths
- 3 Heart transplant
- 30 re-interventions
- 28% developed severe MR

Ross/Konno: Mitral Valve

All late deaths (4) in pts with abnormal mitral valve

LV Hypoplasia

Author

Predictors of Mortality

Latson, 1981	LV X-sect area < 1.6 cm ²
Mocellin, 1983	EFE, LVEVV < 80% normal
Gundry, 1986	EFE, Low EF, High LVEDP
Pelech, 1987	MV < 11mm, AoV < 6.5 mm
Hammon, 1988	LVEDV < 20ml/M ² High PAp
Karl, 1990	Non-Apex forming LV
Parsons, 1991	LVEDD <13mm, vol <20ml/M ²
Rhodes, 1991	MV, AoV, Score < -0.35
Kovalchin, 1998	Retrograde flow in Asc Aorta
Lofland, 2001	EFE, smaller AoV, older age
Colan, 2006	MV, New Score < -0.65, EFE

Endocardial Fibroelastosis

Author

Predictors of Mortality

Latson, 1981	LV X-sect area < 1.6 cm ²
Mocellin, 1983	EFE, LVEDV < 80% normal
Gundry, 1986	EFE, Low EF, High LVEDP
Pelech, 1987	MV < 11mm, AoV < 6.5 mm
Hammon, 1988	LVEDV < 20ml/M ² High PAp
Karl, 1990	Non-Apex forming LV
Parsons, 1991	LVEDD <13mm, vol <20ml/M ²
Rhodes, 1991	Score < -0.35
Kovalchin, 1998	Retrograde flow in Asc Aorta
Lofland, 2001	EFE, smaller Ao V, older age
Colan, 2006	New Score < -0.65, EFE

Endocardial Fibroelastosis

- Predictor of mortality
- Cessation of LV growth in utero
- Causes diastolic dysfunction/PH

©H The Children's Hospital

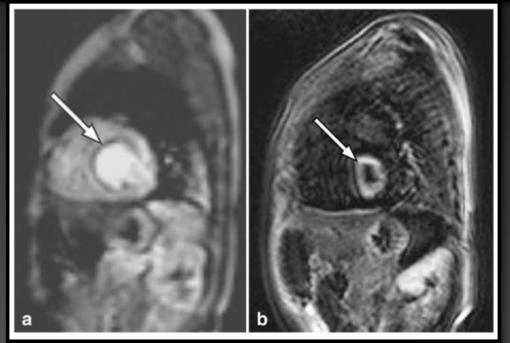
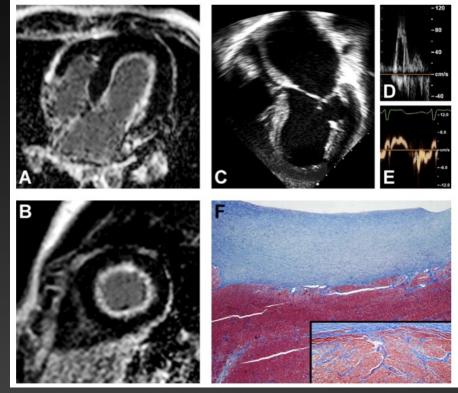

of Philadelphia®

TABLE I Comparison of Echocardiographic and Histopathologic Evaluation for Endocardial Fibroelastosis*

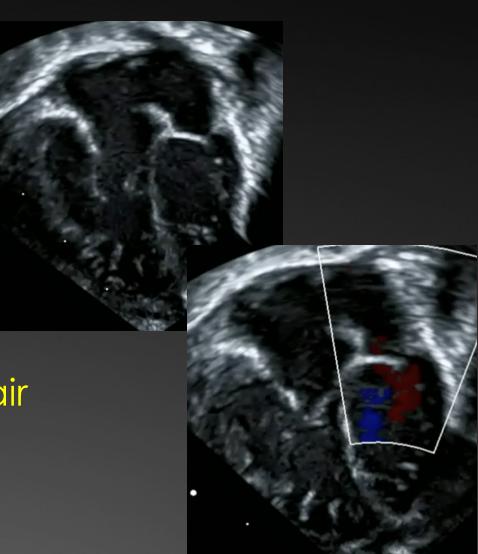
Biopsy Positive Biopsy Negative

Echo-bright endocardium 19 3
Normal endocardium 1 9


*Sensitivity = 95%, specificity = 75%.

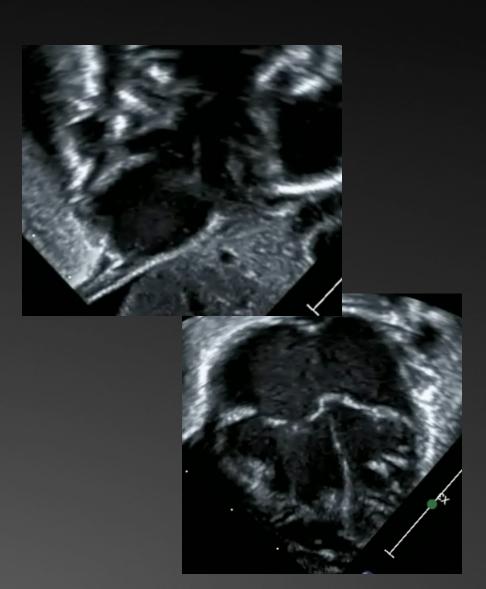
Mahle WT et al. Amer J Cardiol 1998 Stranzinger E et al. Pediatr Radiol 2008

Case Reports of PH


- Late PH in pts with critical AS
- Removing all EFE is not possible
- Is the myocardium underneath the resection normal?

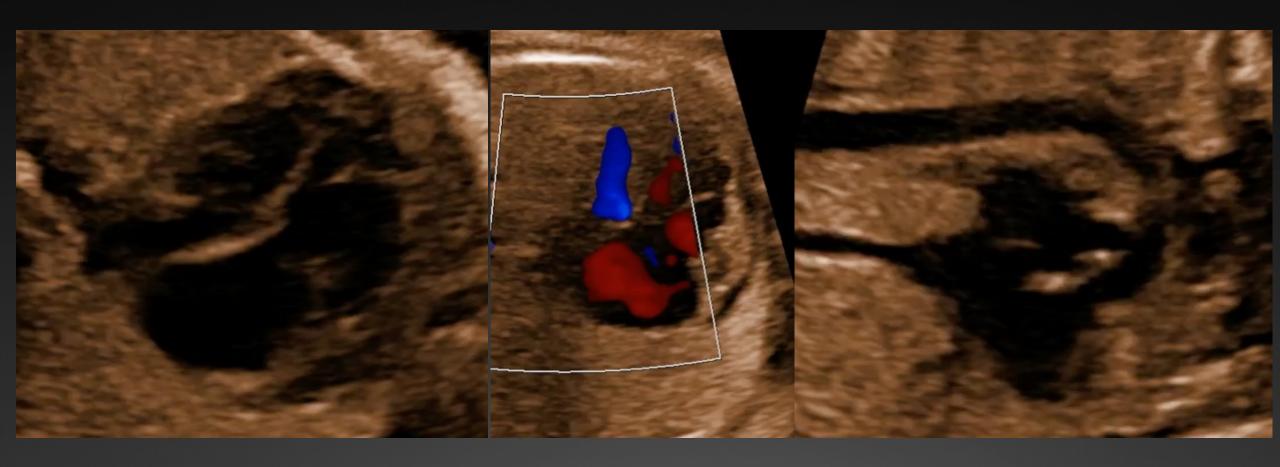
Hypoplastic Left Heart Complex

- Arch hypoplasia with:
 - Small MV, AoV but no obstruction
- Narrow LV with good function
- No EFE


Almost always amenable to 2V repair

Hypoplastic Left Heart Complex

- Sometimes not straightforward:
 - ASD: Causes significant left to right shunt and systemic RVp
 - VSD: Does it shunt right to left to augment cardiac output?
 - MV abnormalities may be masked in infancy
- Left-sided obstruction may develop



LV Hypoplasia: Imaging

- The ventricular "inlet" is the most important element to success of biventricular repair
- Consider pre-op MRI to
 - Assess LV volume and function
 - Presence of EFE
- Long term concerns:
 - Recurrent left-sided obstruction
 - Effect of EFE resection
 - Diastolic dysfunction and pulmonary hypertension

How to counsel a family with this fetal echo?

Borderline LV

"What are we to do when the need to offer clinical advice meets with the immovable object of flawed evidence?"

"All we can do is our best: give the advice, but alert the advisees to the flaws in the evidence on which it is based."

- Oxford Centre for Evidence Based Medicine

