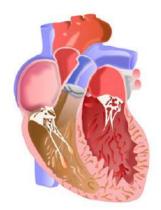

Genetic Conditions Influencing Myocardial Function


Shaine A. Morris, MD, MPH
Medical Director, Cardiovascular Genetics
Medical Director, Fetal Cardiology

Many slides courtesy of Abigail Yesso, MS, CGC

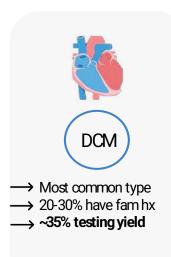
Disclosures

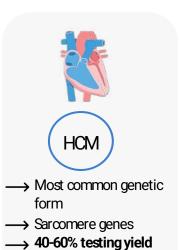
None

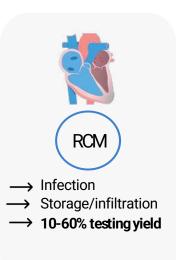
Common Causes of Myocardial Dysfunction

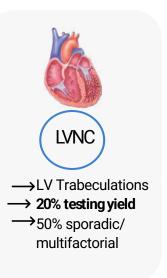
Congenital

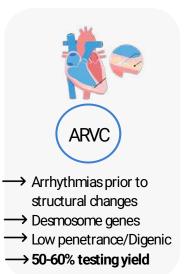
- Metabolic/Storage disorders (e.g. Pompe)
- RASopathies (e.g. Noonan syndrome)
- Primary cardiomyopathy (e.g. HCM due to sarcomeric variants)
- Syndromic aortopathy (e.g Marfan syndrome)
- Mitochondrial syndromes (e.g. MELAS)

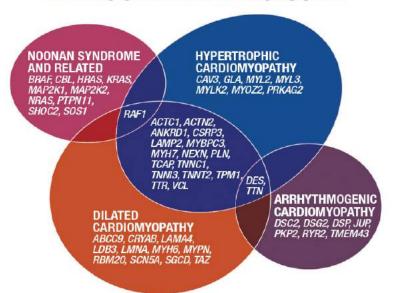

Acquired

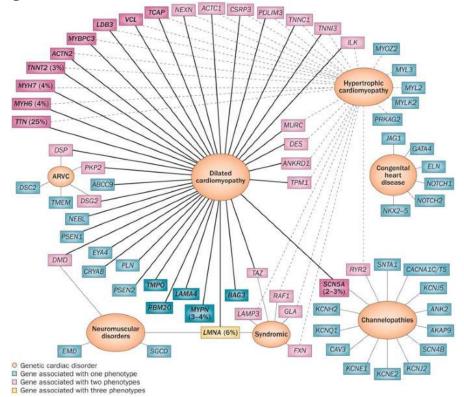

- Myocarditis/post myocarditis
- Ischemic cardiomyopathy
- Hypertensive cardiomyopathy
- Tachycardia-induced cardiomyopathy
- Post-chemotherapy
- Nutritional deficiencies



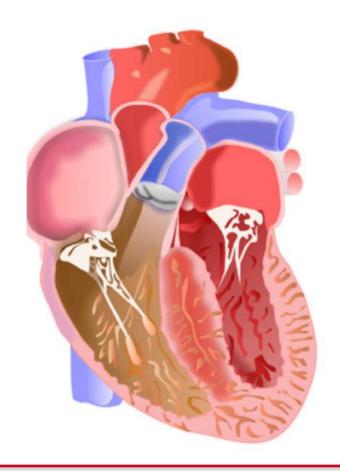


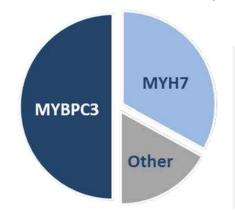

Classic types of cardiomyopathy





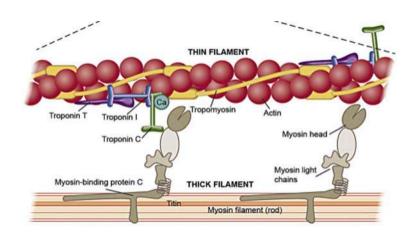
Genetics of cardiomyopathy


Cardiomyopathies and underlying genes



Hypertrophic Cardiomyopathy

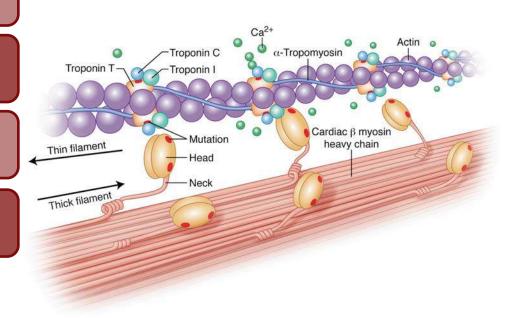
Genetic Testing in HCM


Current detection rate of panel testing is ~60% (with fam hx)

Other Genes: ACTCI,
ACTN2, AGL, BAG3,
CACNAIC, CAV3, CSRP3,
DES, FHLI, FLNC, GAA, GLA,
LAMP2, MYL2, MYL3, PLN,
PRKAG2, TCAP, TNNCI,
TNNI3, TNNT2, TPMI, TTR,
VCL

Mainly <u>sarcomere</u> proteins

MYH7 and MYBPC3 account for 80%
3-5% compound het/digenic

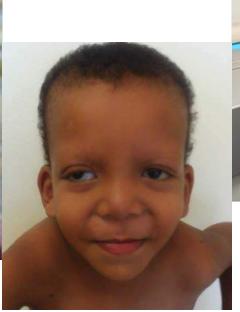

Sarcomere

A sarcomere is the basic unit of muscle tissue in both cardiac and skeletal muscle.

Individual sarcomeres are composed of long, fibrous proteins that slide past each other when the muscles contract and relax.

The two most important proteins within sarcomeres are myosin, which forms a thick, flexible filament, and actin, which forms the thin, more rigid filament.

Disruption of the protein product of genes that code for sarcomere proteins may lead to cardiomyopathy over time



Dysmorphology Checkpoint

RASopathies

Cardiovascular

- → Pulmonary stenosis
- → Hypertrophic cardiomyopathy
- → Atrial septal defects

Development

Variable degree of developmental delay

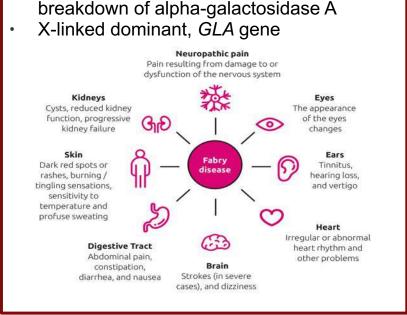
Other Features

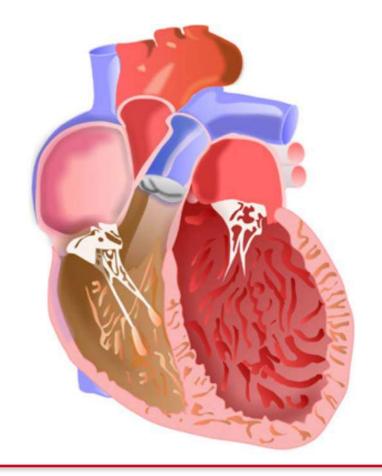
- Short stature
- → Broad, webbed neck
- → Pectus abnormality
- → Wide set nipples
- → Cryptorchidism in males
- Coagulation abnormalities

- Noonan Syndrome (BRAF, KRAS, LZTR1, MAP2K1, MRAS, NRAS, PTPN11 (50%), RAF1, RASA2, TIR1, RRAS2, SOS1, SOS2)
- Noonan Syndrome with Multiple Lentigenes (NSML)
- Costello Syndrome (HRAS)
- Cardiofaciocutaneous syndrome (KRAS, BRAF, MEK1, MEK2)

HCM Metabolic Phenocopies

Danon disease

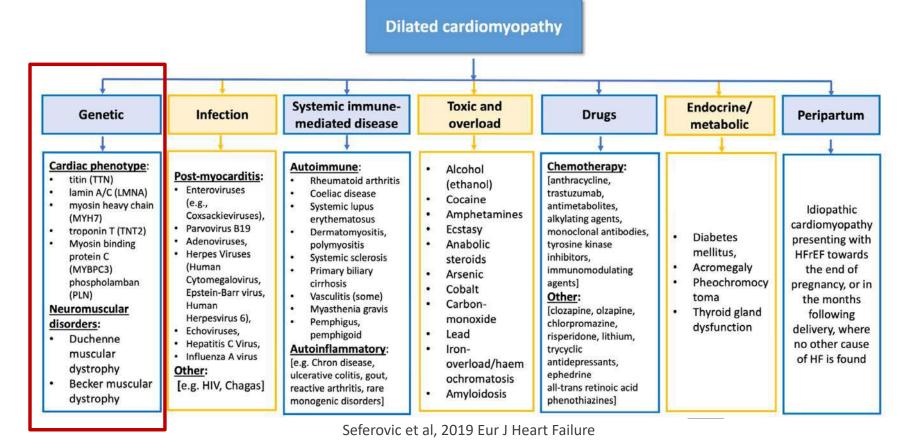

- lysosomal storage disorder,
- X-linked dominant, LAMP2 gene
- Symptoms: cardiomyopathy, skeletal muscle weakness, intellectual disability, GI issues, difficulty breathing, visual abnormalities


Pompe disease

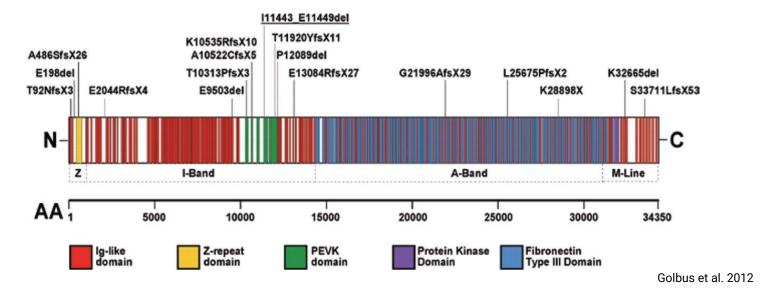
- glycogen storage disorder, alpha glucosidase deficiency
- Autosomal recessive, GAA gene
- <u>Symptoms</u>: Shortness of breath, lung infections, enlarged liver, enlarged tongue that makes it hard to chew and swallow, stiff joints, cardiomyopathy

Fabry disease:

metabolic disease caused by improper breakdown of alpha-galactosidase A



Dilated Cardiomyopathy



DCM Causes

Genetic Causes of Isolated DCM

Gene	Protein	% of cases of genetic DCM	Other associated conditions
TTN	Titin	10-20%	LGMD2J (AR)
LMNA	Lamin A	6%	Arrhythmogenic DCM, Emery-Dreifuss (AR), <i>LMNA</i> -related muscle disease
МҮН7	Myosin 7	4.2%	Hypertrophic cardiomyopathy , Noncompaction cardiomyopathy
МҮН6	Myosin 6	3-4%	Hypertrophic cardiomyopathy
SCN5A	Sodium channel protein type 5 subunit alpha	2-4%	Arrhythmogenic DCM, LQTS, Brugada , Cardiac conduction disease
MYBPC3	Myosin binding protein C	2-4%	Hypertrophic cardiomyopathy
TNNT2	Troponin T	2.9%	Hypertrophic cardiomyopathy , Noncompaction cardiomyopathy , Restrictive cardiomyopathy
BAG3	BAG family molecular chaperone regulator 3	2.5%	Progressive myofibrillar myopathy

 Encodes very large protein called titin. Titin plays an important role in skeletal and cardiac muscle structure.

TTN (Titin)

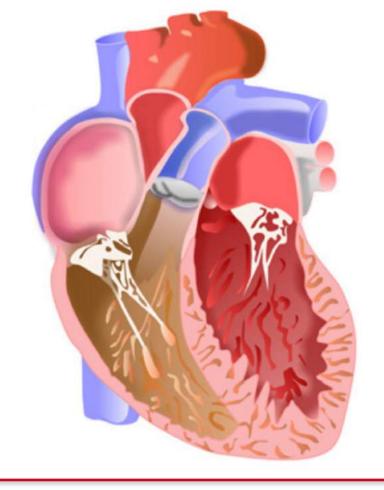
- Interacts with other muscle proteins, including actin and myosin, to keep the components of sarcomeres in place as muscles contract and relax.
- The size of this gene makes it a mutational hotspot; truncating variants are more common in affected individuals >50y.o. With the majority of individuals having variants in the A-band of the gene

Syndromic Causes of DCM

Muscular Dystrophies

- Emery Dreifuss
 - Contractures
 - Muscle weakness (humeroperoneal muscles first)
 - DCM
 - AD and AR (LMNA), XL (EMD, FHL1)
- Limb Girdle type 1
 - AD and AR, LMNA
 - Progressive limb girdle weakness (pelvic then humeral)
 - DCM + CCD
 - NO contractures
 - CAV3 HCM
- · DMD
 - XL, females carriers at risk for DCM

Metabolic


- · Barth
 - XL mitochondrial disorder
 - Mutations in TAZ
 - DCM/LVNC (infantile onset)
 - Neutropenia
 - Hypotonia (DD)/SS
 - Congenital disorders of glycosylation
 - Primary carnitine deficiency

Mitochondrial syndromes

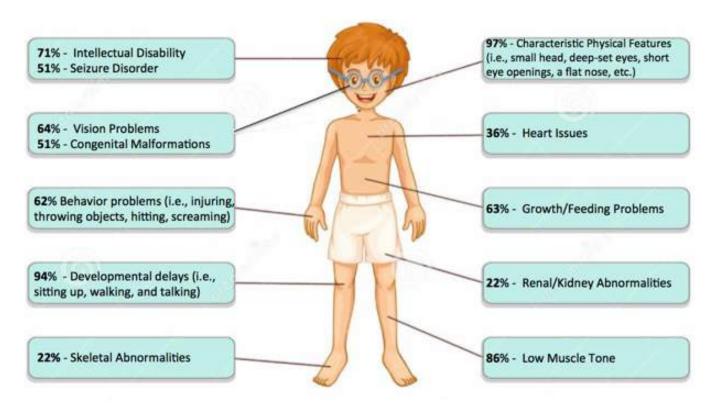
	General Features	СМ	Other Cardiac involvement
MERRF	Myoclonus, general seizures, ataxia	Dilated	
Kearns- Sayre syndrome	 Ophthalmoplegia Retinitis Pigmentosa Cerebellar ataxia, dementia Calcifications at basal ganglia and thalamus cortical or cerebellar atrophy 	Dilated	 PR interval prolongation preceding 2nd or 3rd degree AV block His-ventricular (H-V) interval prolongation WPW syndrome Stokes-Adams syncope
Pearson syndrome	Ophthalmoplegia, ptosisProximal muscle weakness and dysphagia	Dilated	
MELAS	 Stroke-like episodes with cortical lesions usually in posterior regions Dementia and/or seizures Proximal muscle limb weakness with RRF 	Hypertrophic or Dilated	 Sudden death WPW syndrome in both childhood and adult patients
Leigh syndrome	 Severe subacute psychomotor delay and necrotizing symmetrical lesions in the brainstem, thalamus, cerebellum, spinal cord and optic nerves Elevated lactate in blood and CFS 	Hypertrophic or Dilated	Bradycardia
NARP	*Sensory-motor axonal neuropathy, ataxia, seizures, pigmentary retinopathy and dementia	Hypertrophic or Peri-partum dilated	Ventricular pre-exitation

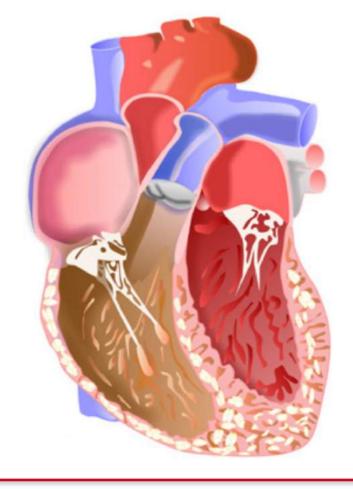
Left Ventricular Noncompaction

LVNC Genes

- Diagnostic yield of genetic testing in clinically identified cases of LVNC ~20%, primarily sporadic
- Due to low yield in index cases, the utility of genetic testing for diagnosis remains unclear
- Mutations in the X-linked gene taffazin (TAZ) causes Barth Syndrome (myopathy, short stature, neutropenia, LVNC) in young males
- Consider mitochondrial / metabolic disease in LVNC, requires a high index of suspicion for evaluation

Gene	Protein		
ACTC1	α-Actinin-2		
ACTN2	α-Cardiac actin		
DTNA	α-Dystrobrevin		
DYS/nZASP	Dystrophin		
GLA	α -Galactosidase		
LDB3	LIM-domain binding 3		
LMNA	Lamin A/C		
МҮВРС3	Myosin-binding protein (
MYH7	β-Myosin heavy chain 7		
TAZ	Tafazzin		
TNNT2	Cardiac troponin T, type 2		
TPM1	α-Tropomyosin		
TNNI3	Cardiac troponin I		





1p36 Deletion Syndrome

1p36 Deletion Syndrome

Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC)

Arrythmogenic Cardiomyopathy genes

Gene ^a	Protein	Prevalence in ACM	Phenotype		
Desmosomal					
PKP2	Plakophilin-2	20–46%	ARVC		
DSP	Desmoplakin	3–20%	ALVC; also associated w/ DCM. Rare homozygCarvajal Syndrome		
DSG2	Desmoglein-2	3–20%	ACM, also associated with dilated cardiomyopathy		
DSC2	Desmocollin-2	1–15%	ACM. Can be recessive		
JUP	Plakoglobin	0-1% (higher in Naxos, Greece)	Naxos disease (cardiocutaneous). Autosomal recessive		
	Founder variants				
PLN	Phospholamban	0-4% (higher in Netherlands)	ACM. Worse outcomes in females.		
TMEM43	Transmembrane protein 43	0-2% (higher in Newfoundland)	ACM. Younger male onset w/ lethal ventricular arrhythmias in males		
Overlap syndromes					
SCN5A	Na _V 1.5	2%	ARVC. Also associated w/ Brugada, DCM, long QT syndrome		
LMNA	lamin A/C	0–4%	ACM; overlap with DCM		
TTN	Titin	0–10%	ACM; overlap with DCM		
FLNC	Filamin C	0–3%	ACM; left predominant		
DES	Desmin	0–3%	ACM		
	Emerging genes				
CTNNA3	Alpha T-catenin	0–2%?	ARVC—few cases reported		
CDH2	Cadherin-2	0–2%?	ARVC—few cases reported		
TJP1	Tight junction protein 1	0–4%?	ACM—few cases reported		
ANK2	Ankyrin-B	0–5%?	ACM—few cases reported		
TP63	p63	0–2%?	ACM—singe case		

DCM and ARVC Overlap

DES (desmin)

Isolated DCM
w/ conduction defects and
arrhythmias
Autosomal dominant

Skeletal myopathy with CM + CCD (AVB) (**DCM**, RCM, HCM)

LMNA (laminopathies)

DCM + CCD

AVB may be presenting sign

SCD common

Autosomal dominant

Emery Dreifuss MD
Limb Girdle MD
Familial partial lipodystrophy
Hutchinson-Gildford progeria
CMT2

SCN5A

DCM (ARVC)
+
Progressive CCD
+
Supraventricular or
ventricular arrhythmias

Brugada LQTS 3 HB, SSS, Vfib, Afib

Some genes that cause DCM have an increased risk for malignant arrhythmias that may proceed any structural heart disease or be out of proportion with the structural disease/LV dilation. These are sometimes referred to as 'left-dominant ARVC'. More recently, the term 'arrhythmogenic cardiomyopathy' is being used to encompass ARVC and other genes that have a significant arrhythmogenic phenotype (DES, LMNA, SCN5A, RBM20, FLNC, DSP).

Genetic Evaluation of Cardiomyopathy—A Heart Failure Society

Cardiomyopathy	Core Genes*	Estimates of Genetic Testing Diagnostic Yield	ACMG Secondary Findings Gene List	Metabolic Causes of Cardiomyopathty	Examples of Genetic Syndromes
НСМ	MYH7, MYBPC3, TNNT2, TNNC1, TNNI3, TPM1, MYL2, MYL3, ACTC1, ACTN2, CSRP3, PLN, TTR, PRKAG2, LAMP2, GLA	30%-60%	MYBPC3, MYH7, TNNT2, TNNI3, TPM1, MYL3, ACTC1, PRKAG2, GLA, MYL2, LMNA	GAA (Pompe); Mitochondrial disease genes	RASopathies (eg, Noonan syndrome, others); Friedreich ataxia
DCM	TTN, [†] LMNA, MYH7, TNNT2, BAG3, RBM20, TNNC1, TNNI3, TPM1, SCN5A, PLN. For testing, all HCM and ARVC genes are recommended to be included.	10%-40%		Mitochondrial disease genes	Muscular dystrophies; Alström syndrome
ARVC	DES, DSC2, DSG2, DSP, JUP, LMNA, PKP2, PLN, RYR2, SCN5A, TMEM43, TTN [†] ; consider full DCM panel	10%-50%	PKP2, DSP, DSC2, TMEM43, DSG2, RYR2 SCN5A		Naxos syndrome; Carvajal syndrome
RCM	Consider HCM or DCM gene panel	10%-60%			
LVNC	Use the gene panel for the cardiomyopathy identified in association with the LVNC phenotype	Unknown		Mitochondrial disease genes, including TAZ in Barth syndrome	1p36 deletion syndrome; RASopathies

Journal of Cardiac Failure Vol. 24 No. 5 2018

Summary

- HCM, DCM, ARVC have high yield of genetics testing. Increasing evidence in LVNC. Varying estimates in RCM
- Think of syndromic and non-syndromic forms
- Consider mitochondrial involvement
- Complex field work with genetic specialists
- Rapidly changing

Genetic Evaluation of Cardiomyopathy—A Heart Failure Society of America Practice Guideline

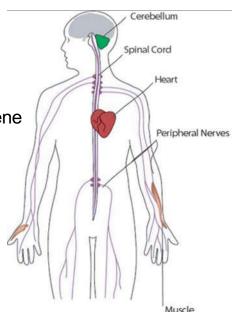
Cardiomyopathy	Core Genes*	Estimates of Genetic Testing Diagnostic Yield	ACMG Secondary Findings Gene List	Metabolic Causes of Cardiomyopathty	Examples of Genetic Syndromes
DCM	TTN, LMNA, MYH7, TNNT2, BAG3, RBM20, TNNC1, TNNI3, TPM1, SCN5A, PLN. For testing, all HCM and ARVC genes are recommended to be included.	10%-40%		Mitochondrial disease genes	Muscular dystrophies Alström syndrome

- For an affected proband, likelihood of a positive genetic test result influenced by family history. ~15-50% of individuals with idiopathic DCM have a positive family history
 - O Positive family history 30-50% likelihood of a positive result
 - O No known family history 10-25%
- Idiopathic DCM and systolic dysfunction without LV dilation have similar genetic risk assessments
- Consider genetic testing when LV ejection fraction <45% (situation dependent 45-50%)
- Genetic testing for DCM can have prognostic and therapeutic implications
 - O When to consider ICD
 - O Neuromuscular/skeletal disease risk
 - O Type of screening indicated for at-risk individuals (arrhythmia may precede dysfunction)

Syndromic Causes of HCM

Friedreich's Ataxia

Most common hereditary ataxia


 Autosomal recessive, trinucleotide repeat (~ 96%) of GAA in the FXN gene

NI: 5-33 repeats

Premuation: 34-65

• Full mutation: 66-1300

 Can have progressive systolic dysfunction

Progressive ataxia (legs and torso)
Muscle weakness
Absent muscle stretch reflexes
Wheelchair bound typically by 15 years

Dysarthria
Pectus cavus
Scoliosis
Diabetes (30%)
Optic nerve atrophy
Dysphagia

ARVC Genotype/Phenotype Correlation

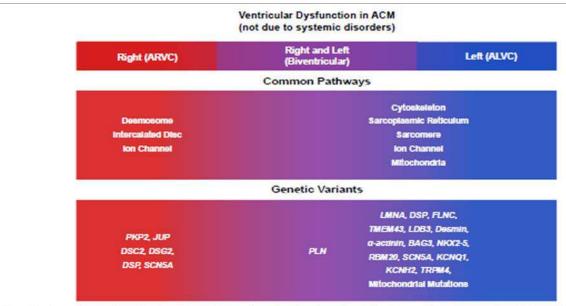


Figure 4 Approach to understanding the common pathway and genetic variants in a patient with arthythmogenic cardiomyopathy (ACM) according to the predominant ventricular dysfunction. See also Table 3. ALVC = arrhythmogenic left ventricular cardiomyopathy; ARVC = arrhythmogenic right ventricular cardiomyopathy; BAG3 = BCL2 associated athanogene 3; DSC2 = desmooglein-2; DSG2 = desmooglein-2; DSCP = desmooglakin; FLNC = filamin-C; JUP = junction plakoglobin; KCNH2 = potassium voltage-gated channel subfamily H member 2; KCNQI = potassium voltage-gated channel subfamily Q member 1; LDB3 = LIM domain binding 3; LHNA = lamin AC; NKX2-5 = NK2 homeobox 5; PKP2 = plakophilin-2; PLN = phospholamban; RBM20 = RNA binding motif protein 20; SCN5A = sodium voltage-gated channel alpha submit 5; TMEM43 = transmembrane protein 43; TRPM4 = transient receptor potential melastatin 4.

