

Baylor College of Medicine

Cardiac and non-cardiac organ transplantation

William J Dreyer, MD

Medical Director Heart Failure, Cardiomyopathy and Cardiac Transplantation
Texas Children's Hospital

Professor of Pediatrics, Baylor College of Medicine

Introduction

- Circulatory failure, occurring in an acute but profound fashion, or at times, in a more subtle but prolonged fashion can result in end organ dysfunction
- If a surgical option is not available, then cardiac transplantation may become the best option to correct the circulatory failure
- If a normal cardiac output is restored, end organ dysfunction may reverse itself, but occasionally it does not
- Continued end organ dysfunction may result in the need for a second organ transplant

Introduction

 The organs at greatest risk for ischemic injury (other than the brain) are the kidney and the liver

 We'll look at both simultaneous pediatric heartkidney and heart-liver transplantation

Heart-kidney transplant

- Relatively uncommon
 (Choudhry, et al Pediatr Transplant Feb 22)
- 25 year national cohort study SRTR database (1992-2017)
 - Patients ≤ 21 years old
 - 9245 heart transplants
 - 63 heart-kidney transplants (0.7%)
 - Patients on dialysis at the time of transplant or with an eGFR≤ 35 ml/min/1.73 m2 did significantly better with sHKTx than with heart transplant alone

Heart-kidney transplant

- Patients not on dialysis or with a eGFR > 35 ml/min/m2 had no better outcome with sHKTx than with heart transplant alone
- Actuarial survival at 1 and 5 years post-sHKTx was 87% and 81.5% respectively and was not different from survival rates for pediatric heart transplant alone in those without significant renal insufficiency

Heart-kidney transplant

(Dani, et al J Thorac Cardiovasc Surg Dec 2022)

- UNOS registry (Jan 1987-Mar 2020)
- Listed peds patients: 109 listed for sHKTx and 318 for heart transplant alone with significant renal insufficiency (dialysis or eGFR <40)
- Patients receiving heart alone without renal insufficiency had a longer mean survival that those receiving heart alone with renal insufficiency (14.6 yrs vs 7.6 yrs)
- Patient receiving sHKTx had the same 1 and 5 year survival (86 and 81%) as noted in the study by Choudhry, et al)

 Pediatric heart-liver transplant has been performed even less commonly than heart-kidney

(Choudhry, et al Pediatr Transplant Nov 21)

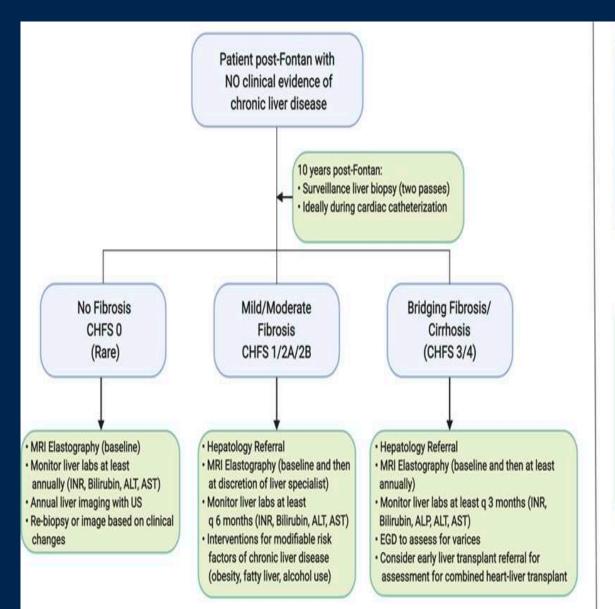
- 25 year national cohort study SRTR database (1992-2017)
 - Patients ≤ 21 years old
 - 9245 heart transplants
 - 20 heart-liver transplants (0.2%)

- New concern: Fontan associated liver disease (FALD)
- Palliated single ventricle circulation never has normal hemodynamics
- Chronic elevated central venous pressure can result in liver scarring
- By adolescence, most Fontan patients have some evidence of liver fibrosis
- As patients develop a "failing Fontan" physiology, progressive liver disease might be expected

How should one go about evaluating for FALD?

When is dual organ heart-liver transplant indicated?

 "Fontan-Associated Liver Disease: Screening, Management and Transplant Considerations"

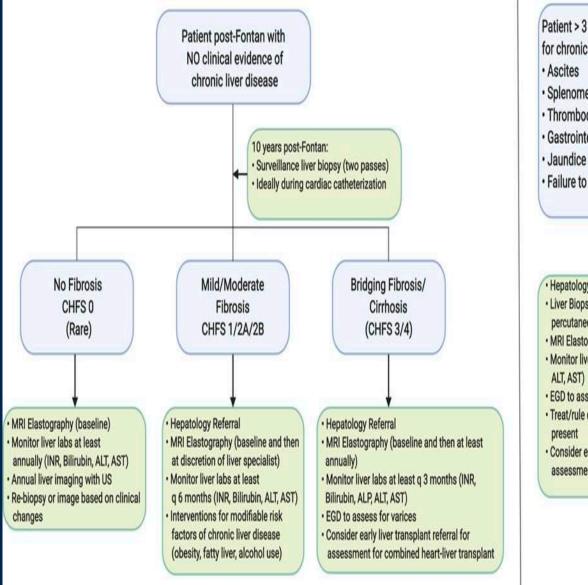

Emamaullee, et al, Circulation 2020 142: 591-604

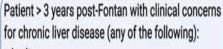
 "Orthotopic Heart and Combined Heart Liver Transplantation: the Ultimate Treatment Option for Failing Fontan Physiology"
 Reardon, et al Current Transplantation Reports 2021 8:9-20

 "Clinical Approach to the Transplant Evaluation for a Patient with Fontan Physiology"

PHTS 2023

Patient > 3 years post-Fontan with clinical concerns for chronic liver disease (any of the following):


- Ascites
- Splenomegaly
- Thrombocytopenia <100,000
- · Gastrointestinal bleeding
- Jaundice
- Failure to thrive/sarcopenia


- · Hepatology Referral
- Liver Biopsy (two passes, transvenous versus percutaneous with ascites drainage prior to biopsy)
- · MRI Elastography (baseline and then at least annually)
- Monitor liver labs at least q 3 months (INR, Bilirubin, ALP, ALT, AST)
- · EGD to assess for varices
- Treat/rule out cardiac causes of hepatic decompensation if present
- Consider early liver transplant referral for assessment for combined heart-liver transplant

- Strongest indicators for combined heart-liver transplant are biopsy driven
 - Bridging fibrosis
 - Cirrhosis
 - Hepatocellular carcinoma

- Splenomegaly
- Thrombocytopenia <100,000
- Gastrointestinal bleeding
- · Failure to thrive/sarcopenia

- · Hepatology Referral
- · Liver Biopsy (two passes, transvenous versus percutaneous with ascites drainage prior to biopsy)
- · MRI Elastography (baseline and then at least annually)
- · Monitor liver labs at least q 3 months (INR, Bilirubin, ALP,
- · EGD to assess for varices
- · Treat/rule out cardiac causes of hepatic decompensation if
- · Consider early liver transplant referral for assessment for combined heart-liver transplant

 Programs reporting their experience with heartliver transplant in Fontan patients;

```
    Mayo clinic 4 (2016)
```

```
– UCLA 5 (2018)
```

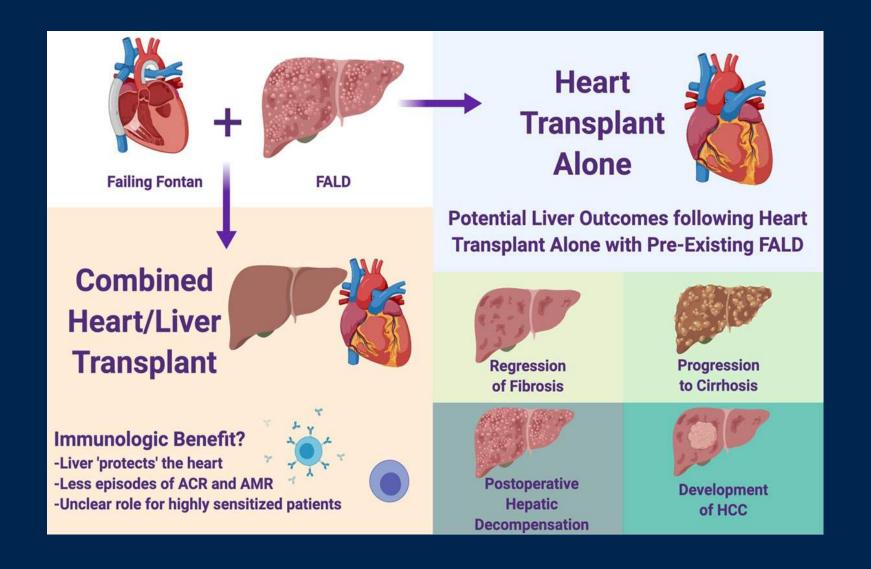
- Stanford9 (2019)
- Philadelphia 11 (2019)

All adult age patients

- Fontan patients are generally the most difficult transplant patients we must address
- Our surgeons face an already complex anatomy, heterotaxy, a difficult explant after prior surgeries, poor tissue integrity and increased bleeding from collaterals
- Post-op there may be vasoplegia, coagulopathy, thrombocytopenia, hypoalbuminemia, poor wound healing, HLA sensitization, increased risk of infection, AKI
- Adding a second organ to transplant could add to and complicate any of these concerns

TCH 10 year experience

- Heart transplants performed at TCH January 2013-December 2022
- Total: 264
- TP for congenital heart disease: 113 (43%)
- TP for failed Fontan physiology: 30
- Survivors to date: 26/30 (87%)
- COD: TCAD 2, SCD 1, MSOF 1


TCH 10 year experience

 Number of combined heart-liver transplants performed:

0

(age range 4-26 years, avg age 19, median age 12)

Heart-Liver Transplant: Summary Statements

- "The decision as to whether a patient may benefit from single or multi-organ transplantation is challenging and fraught with little data to support or refute any given approach."
- "A multi-disciplinary, closely integrated, and frequently communicative team is essential to any program that seeks to perform heart or multi-organ transplantation on failing Fontan patients."

Reardon, et al, Current Transplantation Reports (2021) 8:9-20

Conclusion

 Dual organ transplants in the pediatric age population (heart-kidney, heart-liver) remain uncommon events but are likely to increase as our patient population and our comfort with these procedures changes.

